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Analytic study of the urn model for separation of sand

G. M. Shim, B. Y. Park, and Hoyun Lee
Department of Physics, Chungnam National University, Daejeon 305-764, Republic of Korea

~Received 5 August 2002; published 24 January 2003!

We present an analytic study of the urn model for separation of sand recently introduced by Lipowski and
Droz @Phys. Rev. E65, 031307 ~2002!#. We solve analytically the master equation and the first-passage
problem. The analytic results confirm the numerical results obtained by Lipowski and Droz. We find that the
stationary probability distribution and the shortest one among the characteristic times are governed by the same
free energy. We also analytically derive the form of the critical probability distribution on the critical line,
which supports their results obtained by numerically calculating Binder cumulants~A. Lipowski and M. Droz,
e-print cond-mat/0201472!.
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I. INTRODUCTION

A granular system exhibits extremely rich phenome
which has recently attracted extensive studies. One such
teresting phenomenon is the spatial separation of sha
sand@1#. Sand in a box separated into two equal parts b
wall that allows the transfer of sand through its narrow
prefers to aggregate more in one side under certain co
tions.

Eggers explained the emergence of symmetry break
using a hydrodynamic approach@2#. The key idea is to intro-
duce the effective temperature taking into account the ine
tic collisions for granular material.

Lipowski and Droz proposed a dynamic model to expla
the essence of the phenomena@3#. The model is a certain
generalization of the Ehrenfest model@4#. Interestingly, this
model shows a spontaneous symmetry breaking in con
to other generalizations of the Ehrenfest model. They deri
the master equation and found in a numerical way the ph
diagram that displays a rich structure like continuous a
discontinuous transitions as well as a tricritical point. Th
also numerically solved the first-passage problem to find
ponential or algebraic divergences.

Thanks to its simplicity, the model allows analytic a
proaches. In this paper, we present the results of this ana
study to the master equation and the first-passage prob
addressed by Lipowski and Droz. These not only confi
their numerical results but also give us some insight in
nature of the discontinuous transition in the stationary pr
ability distribution. We also analytically derive the form o
the critical probability distribution on the critical line.

The paper is organized as follows. In Sec. II we brie
review the model and its master equation. In Sec. III
present the analytic solution of the master equation in
thermodynamic limit and the analytic expression of the s
tionary probability distribution. The form of the stationa
probability distribution on the critical line is also derived.
Sec. IV we analytically solve the first-passage problem. D
tailed analysis on the behavior of the characteristic time
given in Sec. V. Section VI is devoted to conclusions a
discussion.
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II. MODEL AND ITS MASTER EQUATION

The model introduced by Lipowski and Droz@3# is de-
fined as follows.N particles are distributed between tw
urns, and the number of particles in each urn is denoted aM
andN2M , respectively. At each time of updates, one of t
N particles is randomly chosen. Letn be the fraction of the
total number of particles in the urn that the selected partic
belongs to. With probability exp@21/T(n)#, the selected par-
ticle moves to the other urn.T(n) is the parameter of an urn
with particlesnN, which measures the thermal fluctuatio
of the urn. Lipowski and Droz choseT(n)5T01D(12n).

It is easy to derive the master equation for the probabi
distributionp(M ,t) that there areM particles in a given urn
at time t @3#,

p~M ,t11!5FS N2M11

N D p~M21,t !1FS M11

N D p~M

11,t !1F12FS M

N D2FS N2M

N D Gp~M ,t !,

~1!

whereF(n)5n exp@21/T(n)# measures the flux of particle
leaving the given urn. Here we introduced for convenien
the notationsp(21,t)5p(N11,t)50.

The difference in the occupancy of the urns can be rep

sented by the particle excesse5(M /N)2( 1
2 ). The time evo-

lution of the averaged particle excess

e~ t !5^e& t5(
M

S M

N
2

1

2D p~M ,t !

is governed by

e~ t11!5e~ t !1
1

N
^F~e!& t , ~2!

where F(e)5F( 1
2 2e)2F( 1

2 1e) measures the net flux o
particles in the given urn. One conventionally takes the u
of time in such a way that there is single update per a part
on an average. Therefore we scale the time byN. Expanding
©2003 The American Physical Society01-1
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Eq. ~2! with respect to 1/N, and using the mean-field ap
proximation in evaluating the average, we get

d

dt
e~ t !5F„e~ t !…. ~3!

Note that the stationary solution of Eq.~3! is determined by
zero points ofF(•). The stable stationary solutions are giv
by zero points ofF(•) with a negative slope, which we ca
the stable fixed points, while the unstable ones are given
those with a positive slope, which we call the unstable fix
points.

Detailed analysis on the existence of the stable station
solutions of Eq.~3! was done by Lipowski and Droz@3#. We
here display their phase diagram in Fig. 1 to make our pa
as self-contained as possible. The stable symmetric solu
(e50) exists in regions I, III, and IV while the stable asym
metric solution (e.0) exists in regions II–IV.

III. THE SOLUTION OF THE MASTER EQUATION

We are mainly interested in investigating the properties
the infinite system. Consider the thermodynamic limitN
→` with (M /N)5(1/2)1e being fixed. Representing th
probability distribution bye instead ofM, expanding Eq.~1!
with respect to 1/N, and keeping the terms up to the fir
order, we arrive at the expression

p~e,t11!5p~e,t !1
1

N H FF8S 1

2
1e D1F8S 1

2
2e D Gp~e,t !

1FFS 1

2
1e D2FS 1

2
2e D G ]

]e
p~e,t !J . ~4!

Scaling again the time byN, expanding Eq.~4! with re-
spect to 1/N, and noting that the second term in the righ

FIG. 1. Phase diagram of the urn model@3#. The symmetric
solution vanishes continuously on the solid line while the asymm
ric one disappears discontinuously on the dotted line. The trans
of the behavior of the stationary probability distribution is deno
by the dashed line.
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handed side can be combined into a total derivative w
respect toe, we finally obtain the partial differential equatio

]

]t
p~e,t !1

]

]e
@F~e!p~e,t !#50. ~5!

Note thatF(•) is zero at a finite number of points. Th
solution of Eq.~5! can be found in the intervals that do n
include those points. At each interval, it would be conveni
to introduce a new variable

l~e!5E
e0

e dx

F~x!
, ~6!

wheree0 is a certain point in the interval. Figure 2 shows
typical behavior of the mapping. We also displayed the m
for ueu. 1

2 by analytic continuation. This is necessary sin
the solution of Eq.~5! is of wave nature.@See Eq.~8! below.#
l increases ase approaches the stable fixed points while
decreases ase approaches the unstable fixed points. With t
help of this parametrization and settingR(l,t)
5F(e)p(e,t), Eq. ~5! now takes the form

]

]t
R~l,t !1

]

]l
R~l,t !50. ~7!

Note that Eq.~7! is in fact a half part of the wave equation
so that its solution is written asR(l,t)5 f (l2t) with f (•)
being an arbitrary differentiable function. It represents
wave that moves to the direction of increasingl as time
evolves, which means that the system moves to stable fi
points. The solution of the original partial differential equ
tion ~5! now reads

p~e,t !5
f @l~e!2t#

F~e!
. ~8!

From the initial probability distributionp0(e)5p(e,0),
we can determine the functionf (•). So we get

t-
n

FIG. 2. l(e) for D50.3,T050.2. The mapping fore.
1
2 is ana-

lytically continuated.
1-2
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p~e,t !5
F~e t!

F~e!
p0~e t!, ~9!

wheree t is given by the relation

l~e t!5l~e!2t. ~10!

Here it should be understood thate t is to be chosen in the
same interval wheree belongs to. Furthermore,p0(e)50 for
ueu. 1

2 is assumed sincee t in Eq. ~9! can be larger~or
smaller! than 1

2 (2 1
2 ). This happens because of the nature

the wave solution. Using the mapping frome to e t , it is
straightforward to show that the total probability is co
served:

E
21/2

1/2

p~e,t !de5E
21/2

1/2

p0~e t!de t51. ~11!

The shape of the probability distribution is distorted by
ratio F(e t)/F(e), so that it accumulates at the nearest sta
fixed points. In Eq.~9!, the ratio approaches zero as tim
evolves unlesse is on a stable fixed point. As a consequen
in the long time limitt→`, the probability distribution be-
comes a sum ofd peaks at the stable fixed pointse i ,

p~e,`!5(
i

pid~e2e i !, ~12!

wherepi are the sum of the initial probabilities in two inte
vals adjacent to its pointe i . We would like to point out that
the system is not ergodic, and its dynamical phase spac
decomposed into disconnected sectors. Each sector is
ciated with a stable fixed point and is separated by the
stable fixed points.

The fixed point conditionF(e)50 is equivalent to Eq.~4!
in Ref. @3#, where Lipowski and Droz analyzed in detail th
condition, and their results are summarized in the phase
gram ~see Fig. 1!. We would like to mention that in region
III and IV in Fig. 1, both the symmetric and the asymmet
solutions exist together. In fact, either solution can be re
ized by choosing an appropriate initial configuration. Li
owski and Droz distinguished regions III and IV according
the different behaviors of the stationary probability distrib
tion in their numerical process of taking the limitN→`. In
region III, there appear twod peaks for the asymmetric so
lutions, while in region IV there appears only the centrad
peak for the symmetric solution. It is contradictory to o
result@Eq. ~12!# where anyd peak for the stable fixed point
can appear depending on the initial configurations.

To resolve this contradiction and understand the natur
the transition between regions III and IV, we take anoth
limit in the master equation~1!; namely, take the long time
limit t→` before we take the limitN→`. This limit may
not properly reflect the properties of the infinite syste
Since the infinite system is not ergodic as we showed ab
changing the order of taking limitsN→` andt→` may not
yield the same result. Anyway, it seems that in their simu
tions about the stationary probability distribution, Lipows
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and Droz took the limitt→` for a finite system sizeN, and
then extrapolated the results toN→`.

Let us first take the long time limit oft→` in Eq. ~1!. In
this limit we may drop off the time dependence in the pro
ability distribution, which now takes the form

p~N!5FS 1

ND p~N21!1@12F~1!#p~N!,

p~M !5FS N2M11

N D p~M21!1FS M11

N D p~M11!

1F12FS M

N D2FS N2M

N D Gp~M ! for M

5N21, . . .,2,1,

p~0!5FS 1

ND p~1!1@12F~1!#p~0!. ~13!

The first equation in Eq.~13! allows us to rewritep(N) in
terms of p(N21), which in turn allows to rewritep(N
21) in terms ofp(N22), and so on. Therefore we find

p~M !5

FS N2M11

N D
FS M

N D p~M21!5p~0!)
i 51

M FS N2 i 11

N D
FS i

ND
~14!

for M5N, . . . ,2,1.p(0) appears as an overall factor to no
malize the probabilities so that we get

p~0!5F 11 (
M51

N

)
i 51

M FS N2 i 11

N D
FS i

ND G 21

. ~15!

Now let us take the limitN→`. With M /N5( 1
2 )1e, and

( i /N)5( 1
2 )1x, and scaling the probability distribution byN,

the stationary probability distribution for largeN, now be-
comes

ps~e!'
eNG(e)

E
21/2

1/2

dxeNG(x)

, ~16!

where

G~e!5E
21/2

e

dxF ln FS 1

2
2xD2 ln FS 1

2
1xD G . ~17!

In the limit N→`, the main contribution to the stationar
probability distribution comes only from the maximum o
G(•), and it becomesd peaks. The maximum ofG(e) oc-
curs when
1-3
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G8~e!5 ln FS 1

2
2e D2 ln FS 1

2
1e D50. ~18!

SinceG8(e) is the difference of logarithms ofF( 1
2 2e) and

F( 1
2 1e), bothG(•) andF(•) share similar qualitative prop

erties. For example, the maximum of both functions occ
at the same stable fixed points. Note that in region II, o
the two asymmetric solutions with positive and negative p
ticle excesses are stable and have the same maximum, w
in region I only the symmetric solution is stable. Therefo
the stationary probability distribution has double peaks
region II and only the central peak in region I. In region
and IV, both the symmetric and the asymmetric solutions
stable, so that the maximum ofG(e) should be determined
by comparing its values at the stable fixed points. The cro
over of the maximum point occurs when both values co
cide. This implies that the transition between the dou
peaks and the central single peak in the probability distri
tion is determined by the conditionDG5G(ea)2G(0)
50, whereea is the nonzero stable fixed point. This cond
tion yields a line that separates two regions III and IV.

It is very interesting to see that2G(•) resembles the free
energy of the equilibrium systems, and the transition
tween twophasesis determined by the condition that the fre
energies of both phases are equal. Furthermore, a ce
characteristic time behaves differently in two phases, as
powski and Droz numerically found@3#. We will show an
analytic relation between them in the following section.

IV. CHARACTERISTIC TIMES

Lipowski and Droz defined an averaged first-passage t
t(M ) needed for a configuration withM particles in an urn
~andN2M particles in the other urn! to reach the symmetric
configuration (M5N/2) @3#. They obtained the relation
among the averaged characteristic times from the dynam
rules as

t~M !5FS M

N D @t~M21!11#1FS N2M

N D @t~M11!11#

1F12FS M

N D2FS N2M

N D G@t~M !11# ~19!

for M5N,N21, . . . ,(N/2)11. Here it is understood tha
the term associated witht(N11) does not appear.@In fact,
its coefficientF(0) vanishes.# By definition of the character
istic times,t(N/2)50 andt(N2M )5t(M ).

Defining the difference of successive characteristic tim
asDt(M )5t(M )2t(M21), Eq. ~19! can be rewritten as

Dt~M !5
1

FS M

N D F11FS N2M

N DDt~M11!G . ~20!

By applying this relation repeatedly untilDt(N)51/F(1) is
reached, we get the expression
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Dt~M !5
1

FS M

N D F 11 (
i 51

N2M

)
j 51

i FS N2M2 j 11

N D
FS M1 j

N D G .

~21!

Since t(N/2)50 by definition, we immediately ge
t@(N/2)11#5Dt@(N/2)11#, which is given by Eq.~21!
with M5(N/2)11. By successively addingDt(M ), we get
the general expression for t(M ) for M5N,N
21, . . . ,(N/2)11:

t~M !5 (
k5(N/2)11

M
1

FS k

ND F 11 (
i 51

N2k

)
j 51

i FS N2k2 j 11

N D
FS k1 j

N D G .

~22!

We are mainly interested in the behavior oft(M ) as N
increases. Again we scale the characteristic times byN. With
M /N5(1/2)1e being fixed, and introducingk/N5(1/2)
1x, i /N5y2x, j /N5z2x, the summations for largeN can
be replaced by integrations so that the characteristic times
e.0 takes the form

t~e!'NE
0

e

dxE
x

1/2

dyeNH(x,y), ~23!

with H(x,y)5G(y)2G(x). The longest characteristic tim
t(N) corresponds tot(e51/2). The shortest onet@(N/2)
11# corresponding tot(e50) is, in general, smaller than
t(e), with positivee by an order of magnitude. It is neces
sary to deal with it separately. We get

tS N

2
11D'E

0

1/2

dyeNH(0,y). ~24!

SinceH(0,y)5G(y)2G(0), both the shortest characte
istic time t@(N/2)11# and the stationary probability distri
bution ps(e) have essentially the same functional depe
dence onG(•). Therefore it is not surprising that behavio
of both quantities for largeN are closely related. However,
is not clear why they are.

V. ANALYSIS OF THE CHARACTERISTIC TIMES

We first consider the behavior oft@(N/2)11#, the short-
est one among the characteristic times. For largeN, the main
contribution tot@(N/2)11# comes from the maximum poin
ym of H(0,y)5G(y)2G(0), or G(y), which was dealt in
Sec. III.

In regions I and IV, the maximum occurs atym50, cor-
responding to the symmetric configuration, while in regio
II and III it occurs atym.0 corresponding to the asymmetr
configurations. Therefore the maximum is zero in region
and IV, while it is positive in regions II and III.

Whenym50, we may expandH(0,y) aroundy50 to get
1-4
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H~0,y!'22F12
D/2

~T01D/2!2Gy22
4

3 F12
3~D/2!2

~T01D/2!4Gy4

1•••. ~25!

Therefore it yieldst@(N/2)11#;N21/2 as long as the coef
ficient of the first term in Eq.~25! is negative. This is the
case in regions I and IV. The coefficient vanishes whenT0

5AD/22(D/2), which corresponds to the critical line foun
by Lipowski and Droz@3#. On this line, we get

H~0,y!'2
4

3 S 12
3

2
D D y42

32

15S 12
5

4
D2D y61•••,

~26!

which yields t@(N/2)11#;N21/4 for D, 2
3 , and t@(N/2)

11#;N21/6 at D5 2
3 corresponding to the tricritical point.

When ym.0, the maximum is positive, so thatt@(N/2)
11#;N21/2eaN ~with a being a positive constant!; that is, it
diverges exponentially.

Now let us investigate the behavior of the longest char
teristic timet(N) or t(e51). Again the main contribution
comes from the maximum point ofH(x,y) in the region
restricted by three linesy5x,x50, andy5 1

2 . Note thaty
>x in the region. Interestingly, the maximum point (xm ,ym)
is closely related with the fixed points ofF(e).

In region I, e50 is only the fixed point so thatxm5ym
50, and the maximum is zero. ExpandingH(x,y) about this
point, we get

H~x,y!'22F12
D/2

~T01D/2!2G ~y22x2!1•••. ~27!

The coefficient of the leading term in Eq.~27! is negative
only if T0.AD/22(D/2), that is, above the critical line
Changing the variablesx,y to the polar coordinatesr ,u, and
scaling the radial coordinater by AN, we arrive at

t~N!'E
0

cAN
drr E

p/4

p/2

duexpF22S 12
D/2

~T01D/2!2D
3r 2cos~2u!G . ~28!

Herec is a constant that gives the upper bound of the in
gration overr. The contribution from the neighborhood o
u5p/4 yields a logarithmic divergence. Figure 3 shows
typical behavior of the characteristic timet(N) as a function
of N for several values ofD with T050.2. The first two
uppermost lines stand fort(N) in region II, and the others
represent that in region I. We conclude that in region I,t(N)
diverges logarithmically asN increases.

As we see in Eq.~27!, the leading term vanishes on th
critical line. On this line, we need to expand more. So
01130
-

-

H~x,y!'2
4

3 S 12
3

2
D D ~y42x4!2

32

15S 12
5

4
D2D ~y62x6!

1•••. ~29!

Again changing the variablesx,y to the polar coordinates
and scaling the radial coordinate appropriately~by N1/4 or
N1/6), we conclude thatt(N) diverges algebraically asN1/2

on the critical line and asN2/3 at the tricritical point.
In regions II–IV, there appear many fixed points amo

which we can always find one withym.xm and G(ym)
.G(xm). There, the maximumH(xm ,ym) is positive, and
t(N) diverges exponentially asN increases. We would like
to point out that the situation is different from that o
t@(N/2)11)]. In fact, it corresponds to the case withxm
being fixed to zero.

Finally, let us consider the behavior oft(N) on the line
separating two regions I and IV. As we approach this li
from region IV, the nonzero fixed points merge to disapp
at e5e1.0. That is, we can find a positivee1 such that
F(e1)5F 8(e1)50. On this line, the maximum point is
given by xm5ym5e1, so that the maximumH(xm ,ym) is
zero. ExpandingH(x,y) around this point, we get

H~x,y!'2
1

6
G-~e1!@~y2e1!32~x2e1!3#1•••.

~30!

@Here we do not write downG-(e1) explicitly since it is not
important as far as it is positive.# Note that the leading orde
is the third instead of the fourth, as in the case of the criti
line. The reason is thatG(e) is not symmetric aboute
5e1, while it is symmetric aboute50. Consequently,t(N)
on this line diverges algebraically asN1/3.

VI. CONCLUSIONS

We analytically investigate the urn model introduced
Lipowski and Droz@3#. We exactly solve the master equatio

FIG. 3. characteristic timet(N) as a function ofN for T0

50.2 andD51.72,1.744 067,1.77,1.8,, and 2.0~from the top!.
1-5
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of the model in the thermodynamic limit and find how th
probability distribution evolves. In the long time limit, th
probability distribution becomesd peaks only at the stabl
fixed points. In fact, the ergodicity of the dynamics is br
ken; so that the dynamical phase space is decomposed
disconnected sectors separated by the unstable fixed po
The strength of ad peak is equal to the sum of initial prob
abilities in the disconnected sector it belongs to.

We also solve exactly the stationary probability distrib
tion where we take the long time limit before we take th
modynamic limit. Regardless of the initial probability distr
bution, it shows double peaks or a single central pe
depending on the parameters of the system. The final form
of the stationary probability distribution resembles that of
equilibrium systems, where the transition from the doub
peaks to the single peak is determined by the condition
free energiesof two phases become equal.

Recently, Lipowski and Droz@5# numerically calculated
Binder cumulants of the urn model to find that the critic
probability distribution has the formp(x);e2x4

on the criti-
f

01130
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cal line, andp(x);e2x6
on the tricritical point, wherex is

the rescaled order parameter proportional to the particle
cesse. As we showed,G(e);H(0,e), and its behavior on
the critical line ~including the tricritical point! is given by
Eq. ~26!. Therefore the critical probability distribution ha
the form p(e);exp@24

3(123
2D)e4# on the critical line, and

p(e);exp@2128
135e

6# on the tricritical point. Our analytic resul
supports their numerical result.

The first-passage problem is analytically solved. Intere
ingly, both the shortest characteristic time and the station
probability distribution are governed by the samefree en-
ergy. Therefore, the behavior of the shortest characteri
time and the properties of the stationary probability distrib
tion are closely related. The analytic results on the beha
of the characteristic times support the numerical results
Lipowski and Droz@3#.

Finally, it would be very interesting to understand wh
both the stationary probability distribution and the short
characteristic time are governed by the samefree energy. It
would also be of interest to extend our analytic study
many-urn models and other types of urn models.
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