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Analytic study of the urn model for separation of sand
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We present an analytic study of the urn model for separation of sand recently introduced by Lipowski and
Droz [Phys. Rev. E65, 031307(2002]. We solve analytically the master equation and the first-passage
problem. The analytic results confirm the numerical results obtained by Lipowski and Droz. We find that the
stationary probability distribution and the shortest one among the characteristic times are governed by the same
free energy We also analytically derive the form of the critical probability distribution on the critical line,
which supports their results obtained by numerically calculating Binder cumul&ntspowski and M. Droz,
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I. INTRODUCTION Il. MODEL AND ITS MASTER EQUATION

The model introduced by Lipowski and Dr¢3] is de-

A granular system exhibits extremely rich phenomenafined as follows.N particles are distributed between two
which has recently attracted extensive studies. One such inns, and the number of particles in each urn is denoted as
teresting phenomenon is the spatial separation of shaketndN—M, respectively. At each time of updates, one of the
sand[1]. Sand in a box separated into two equal parts by & particles is randomly chosen. Letbe the fraction of the
wall that allows the transfer of sand through its narrow slittotal number of particles in the urn that the selected particles
prefers to aggregate more in one side under certain condfelongs to. With probability exXp-1/T(n)], the selected par-
tions. ticle moves to the other uri.(n) is the parameter of an urn

Eggers explained the emergence of symmetry breakin&"ith particlesn N, which measures the thermal fluctuations
using a hydrodynamic approaf®]. The key idea is to intro- Of the um. Lipowski and Droz chosB(n) =To+A(1—n).
duce the effective temperature taking into account the inelas-. It_|s easy to derive the master equa_tlon fc_)r the_probablllty
tic collisions for granular material. dlst_r|but|on p(M,t) that there aréM particles in a given urn

Lipowski and Droz proposed a dynamic model to explainat timet [3],
the essence of the phenomei®. The model is a certain N—M+1
generalization of the Ehrenfest modd]. Interestingly, this p(M,t+1)= F(T) p(M—1t)+F
model shows a spontaneous symmetry breaking in contrast
to other generalizations of the Ehrenfest model. They derived M N—M
the master equation and found in a numerical way the phase +1t)+|1- F(W) - F(THP(M 4,
diagram that displays a rich structure like continuous and
discontinuous transitions as well as a tricritical point. They (1)

also numerically solved the first-passage problem to find ex- i
ponential or algebraic divergences whereF(n)=nexd —1/T(n)] measures the flux of particles

Thanks to its simplicity, the model allows analytic ap- leaving the given urn. Here we introduced for convenience
proaches. In this paper, we present the results of this analytfge notationsp(—1.) =p(N+1.)=0.
' The difference in the occupancy of the urns can be repre-

study to the master equation and the first-passage problem _ L _
addressed by Lipowski and Droz. These not only confirms€nted by the particle excess (M/N) —(3). The time evo-
their numerical results but also give us some insight in thdution of the averaged particle excess
nature of the discontinuous transition in the stationary prob-
ability_(_jistribution._ We glsq analytically deriye the form of e(t):(e>t:2 (%_ %) p(M,t)
the critical probability distribution on the critical line. M

The paper is organized as follows. In Sec. Il we briefly
review the model and its master equation. In Sec. Ill welS governed by
present the analytic solution of the master equation in the
thermodynamicﬂlimit'an.d the analytic expression of ?he sta- e(t+1)=e(t)+ i<}-( )1, )
tionary probability distribution. The form of the stationary N
probability distribution on the critical line is also derived. In
Sec. IV we analytically solve the first-passage problem. Dewhere F(€)=F (3 — €) —F(3 + €) measures the net flux of
tailed analysis on the behavior of the characteristic times iparticles in the given urn. One conventionally takes the unit
given in Sec. V. Section VI is devoted to conclusions andof time in such a way that there is single update per a particle
discussion. on an average. Therefore we scale the timé\b¥xpanding

M+1 M
L
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FIG. 1. Phase diagram of the urn mod&l. The symmetric FIG. 2. A () for A=0.3T(=0.2. The mapping foe> 3 is ana-
solution vanishes continuously on the solid line while the asymmetlytically continuated.
ric one disappears discontinuously on the dotted line. The transition
of the behavior of the stationary probability distribution is denotedhanded side can be combined into a total derivative with

by the dashed line. respect tae, we finally obtain the partial differential equation
Eg. (2) with respect to M, and using the mean-field ap- d d _
proximation in evaluating the average, we get FPlet)+ 2 Fep(et)]=0. )
d Note thatF(-) is zero at a finite number of points. The
ae(t)—]-‘(e(t)). ) solution of Eq.(5) can be found in the intervals that do not

include those points. At each interval, it would be convenient
Note that the stationary solution of E@) is determined by to introduce a new variable
zero points ofF(-). The stable stationary solutions are given
by zero points ofF(-) with a negative slope, which we call e dx
the stable fixed points, while the unstable ones are given by Ae)= CFX)’ ©®
those with a positive slope, which we call the unstable fixed 0

points. wheree is a certain point in the interval. Figure 2 shows a
Detailed analysis on the existence of the stable stationarypical behavior of the mapping. We also displayed the map
solutions of Eq(3) was done by Lipowski and Drd8]. We  for |¢[>1 by analytic continuation. This is necessary since
here display their phase diagram in Fig. 1 to make our papehe solution of Eq(5) is of wave nature[See Eq(8) below]
as self-contained as possible. The stable symmetric solutiog jncreases as approaches the stable fixed points while it
(e:Q) exists in regions I, Il and v while the stable asym- decreases asapproaches the unstable fixed points. With the
metric solution €>0) exists in regions I1-IV. help of this parametrization and settingR(\,t)
=F(e)p(e,t), Eqg. (5 now takes the form
Ill. THE SOLUTION OF THE MASTER EQUATION

We are mainly interested in investigating the properties of ﬁR()\,t)+ iR()\,t)zo, (7
the infinite system. Consider the thermodynamic lirNit Jt I\
—oo with (M/N)=(1/2)+ ¢ being fixed. Representing the
probability distribution bye instead of\M, expanding Eq(1)
with respect to M, and keeping the terms up to the first
order, we arrive at the expression

Note that Eq(7) is in fact a half part of the wave equations,
so that its solution is written aR(A,t)=f(A—t) with f(-)
being an arbitrary differentiable function. It represents a
wave that moves to the direction of increasingas time

1 1 1 evolves, which means that the system moves to stable fixed
p(e,t+1)=p(e,t)+ N F' §+6) +F’(§—5) p(e,t) points. The solution of the original partial differential equa-
tion (5) now reads
+ F(l+ F(l i p( t)J (4) fir(e)—t]
S TE|— ~ €| | — €, . -
2 2 Je D(Eyt)=W- (8
Scaling again the time bi¥, expanding Eq(4) with re- From the initial probability distributiorpg(e)=p(e,0),

spect to 1IN, and noting that the second term in the right- we can determine the functidi{-). So we get
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Fer) and Droz took the limit—« for a finite system siz&\, and
plet)= Fle) Po( )., ©) then extrapolated the results Ko .
Let us first take the long time limit df—« in Eq. (1). In
wheree, is given by the relation this limit we may drop off the time dependence in the prob-

ability distribution, which now takes the form
Ne)=N(e)—t. (10

Here it should be understood thgtis to be chosen in the
same interval where belongs to. Furthermor@,(e€) =0 for

1
D(N)=F(N) PIN=1)+[1-F(1)Ip(N),

le|>3 is assumed since, in Eq. (9) can be larger(or -M+ M+1
smalle) than} (—3). This happens because of the nature of P(M)=F| —o—p(M—1)+F| ——|p(M+1)
the wave solution. Using the mapping froento ¢, it is
straightforward to show that the total probability is con- M N—M
served: +|1-F N -F N p(M) for M
12 12 =N-1,...,2,1,
f p(e,t)dGZI Po(€)de=1. (11
—-1/2 —-1/2 1
0)=F| = /p(1)+[1-F(1 0). 13
The shape of the probability distribution is distorted by a P(0) (N) P(L)* (1)]p(0) 13

ratio F(e;)/ F(e€), so that it accumulates at the nearest stable
fixed points. In Eq.(9), the ratio approaches zero as time The first equation in Eq(13) allows us to rewritep(N) in
evolves unless is on a stable fixed point. As a consequence terms of p(N—1), which in turn allows to rewritep(N
in the long time limitt— oo, the probability distribution be- —1) in terms ofp(N—2), and so on. Therefore we find
comes a sum ob peaks at the stable fixed poinds,

(N—M+1) (N—i+1

— m F

N N

p(e2) =2 pidlee), 1 pM)=——p——pM-1)=pO]] ——
(5] N

wherep; are the sum of the initial probabilities in two inter- (14)

vals adjacent to its poing; . We would like to point out that

the system is not ergodic, and its dynamical phase space fer M=N, ...,2,1.p(0) appears as an overall factor to nor-

decomposed into disconnected sectors. Each sector is as$Balize the probabilities so that we get

ciated with a stable fixed point and is separated by the un- ) .

stable fixed points. . F( N-—i +1)

The fixed point conditiorf(€) =0 is equivalent to Eq4) N
in Ref.[3], where Lipowski and Droz analyzed in detalil the p(0)= 1+M2:1 |1:[1 i (15
condition, and their results are summarized in the phase dia- F(N)

gram(see Fig. 1L We would like to mention that in regions
[l and IV in Fig. 1, both the symmetric and the asymmetric o ) .
solutions exist together. In fact, either solution can be realNOW let us take the limiN—c. With M/N=(z)+e, and
ized by choosing an appropriate initial configuration. Lip- (i/N)=(3)+x, and scaling the probability distribution iy
owski and Droz distinguished regions Il and IV according tothe stationary probability distribution for large, now be-
the different behaviors of the stationary probability distribu-comes
tion in their numerical process of taking the linNt—. In
region lll, there appear twé peaks for the asymmetric so- eNG(e)
lutions, while in region IV there appears only the cenifal Ps(€)~—15 : (16)
peak for the symmetric solution. It is contradictory to our J dx Ve
result[Eg. (12)] where anys peak for the stable fixed points
can appear depending on the initial configurations.

To resolve this contradiction and understand the nature ofhere
the transition between regions Il and IV, we take another
limit in the master equatiofl); namely, take the long time G(e)= JE dx
limit t—o before we take the limiN—-oco. This limit may -
not properly reflect the properties of the infinite system.
Since the infinite system is not ergodic as we showed above, In the limit N— o, the main contribution to the stationary
changing the order of taking limifd—c andt—o may not  probability distribution comes only from the maximum of
yield the same result. Anyway, it seems that in their simula-G(-), and it becomes peaks. The maximum d&(e) oc-
tions about the stationary probability distribution, Lipowski curs when

—-1/2

1
InF 5 §+x (17

1
——x)—InF
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1 1 N-M—j+1
G'(e)=InF|=—¢€|—InF|=+¢|=0. (18) N-M P F| —————
2 2 Ar(M)= 1+ >, N
"M)="y =1 j=1 M +j
SinceG’(€) is the difference of logarithms ¢ (3 — €) and F ‘N F N
F(3+¢€), bothG(-) andF(-) share similar qualitative prop- (21)

erties. For example, the maximum of both functions occurs . L ] )
at the same stable fixed points. Note that in region II, onlySince 7(N/2)=0 by definition, we immediately get
the two asymmetric solutions with positive and negative par7L(N/2)+1]=A[(N/2)+1], which is given by Eq.(2])
ticle excesses are stable and have the same maximum, whifdth M =(N/2)+1. By successively addiny (M), we get
in region | only the symmetric solution is stable. Thereforeth® —general —expression for#(M) for M=N,N
the stationary probability distribution has double peaks in— 1. ..., (N/2)+1:
region Il and only the central peak in region I. In region IlI )
and 1V, both the symmetric and the asymmetric solutions are y —_ F( N—k—j+1
stable, so that the maximum & (e) should be determined

by comparing its values at the stable fixed points. The cros;s-T(M):k:(NE/Z)+1 TK\ 1+ izl ].1;[1 k—-‘rj
over of the maximum point occurs when both values coin- (N) (

cide. This implies that the transition between the double
peaks and the central single peak in the probability distribu-

tion is determined by the conditiod G=G(e,) —G(0) We are mainly interested in the behavior gfM) as N

=0, wheree, is the nonzero stable fixed point. This condi- jncreases. Again we scale the characteristic timel.byith
tion yields a line that separates two regions Ill and IV. M/N=(1/2)+ e being fixed, and introducing/N=(1/2)
Itis very interesting to see thatG(-) resembles the free i/N=y—x, j/N=z—x, the summations for large can

energy of the equilibrium systems, and the transition bepg repjaced by integrations so that the characteristic times for
tween twophasess determined by the condition that the free >0 takes the form

energies of both phases are equal. Furthermore, a certain

characteristic time behaves differently in two phases, as Li- . 12

powski and Droz numerically founf]. We will show an T(e)~Nf dxf dyeVHey),| (23
analytic relation between them in the following section. 0 X

(22)

with H(X,y)=G(y) — G(x). The longest characteristic time

7(N) corresponds tor(e=1/2). The shortest one[ (N/2)
Lipowski and Droz defined an averaged first-passage timg 1] corresponding tor(e=0) is, in general, smaller than

7(M) needed for a configuration withl particles in an urn  7(€), with positive e by an order of magnitude. It is neces-

(andN— M particles in the other uirto reach the symmetric Sary to deal with it separately. We get

configuration M =N/2) [3]. They obtained the relations

IV. CHARACTERISTIC TIMES

among the averaged characteristic times from the dynamical . E+ 1]~ J'llzdyeNH(o,y)_ (24)
rules as 2 0
M N—M SinceH(0,y) =G(y)—G(0), both the shortest character-
7(M)= F(ﬁ) [7(M—-1)+1]+F N )[T(M +1)+1] istic time [ (N/2)+ 1] and the stationary probability distri-
" NeM bution ps(e) have essentially the same functional depen-
- dence onG(-). Therefore it is not surprising that behaviors
1= F(W) “FlN ) [r(M)+1] 19 of both qua(nt)ities for larg\l are closelyprelat%d. However, it
is not clear why they are.
for M=N,N—1,...,(N/2)+1. Here it is understood that
the term associated with(N+1) does not appeafin fact, V. ANALYSIS OF THE CHARACTERISTIC TIMES
its coefficientF(0) vanished.By definition of the character- . i .
istic times, 7(N/2)=0 and7(N—M)=7(M). We first consider the behavior af (N/2)+ 1], the short-

Defining the difference of successive characteristic time£St 0ne among the characteristic times. For I&igthe main
asA7(M)=7(M)—7(M—1), Eq.(19) can be rewritten as contribution to7] (N/2)+ 1] comes from the maximum point
Ym Of H(0y)=G(y)—G(0), or G(y), which was dealt in

Sec. lll.
1 —
Ar(M)= Ve 1+ F(T)AT(M+1) . (20 In regions | and IV, the maximum occurs g,=0, cor-
F(— responding to the symmetric configuration, while in regions
N Il and Ill it occurs aty,,>0 corresponding to the asymmetric

configurations. Therefore the maximum is zero in regions |
By applying this relation repeatedly unfilz(N)=1/F(1) is  and IV, while it is positive in regions Il and III.
reached, we get the expression Wheny,,=0, we may expanét (0,y) aroundy=0 to get
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(To+A/2)? y
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3

3(A/2)?

H(Oy)~—2 -
(0y) (To+A2)%

y

+o (25)

Therefore it yieldsd (N/2)+1]~N~*2 as long as the coef-
ficient of the first term in Eq(25) is negative. This is the
case in regions | and IV. The coefficient vanishes whgn
=/A/2—(A/2), which corresponds to the critical line found
by Lipowski and DroZ3]. On this line, we get

32

4 3 4 > 21,6
H(O,y)~—§ 1—§A —1—5 1_ZA y+,

(26)

which yields 7 (N/2)+1]~N"Y4 for A<%, and 7[(N/2)
+1]~N"Y¢ at A=2 corresponding to the tricritical point.

Wheny,>0, the maximum is positive, so thaf (N/2)
+1]~N"Y%e*N (with a being a positive constanthat is, it
diverges exponentially.

Now let us investigate the behavior of the longest charac-H(X,y)~ —

teristic time 7(N) or 7(e=1). Again the main contribution
comes from the maximum point dfi(x,y) in the region
restricted by three lineg=x,x=0, andy=3. Note thaty
=X in the region. Interestingly, the maximum poixt{,y)
is closely related with the fixed points Gf(e).

In region |, e=0 is only the fixed point so that,=yn,
=0, and the maximum is zero. ExpandiHgx,y) about this
point, we get

A2

— 2_X2 + ...
(To+A/2)2 v )

(27)

H(x,y)~—2{1—

The coefficient of the leading term in EQR7) is negative
only if To>A/2—(A/2), that is, above the critical line.
Changing the variables,y to the polar coordinates 6, and
scaling the radial coordinateby N, we arrive at

wl2 A2
doexp —2|1— ———
/4 p[ ( (T0+A/2)2>

. (28)

c/N
T(N)%f drr
0

X r2cog26)

Herec is a constant that gives the upper bound of the inte

gration overr. The contribution from the neighborhood of
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SEEER (29
Again changing the variables,y to the polar coordinates
and scaling the radial coordinate appropriatddy N* or
N, we conclude that(N) diverges algebraically as/?
on the critical line and abl?” at the tricritical point.

In regions II-1V, there appear many fixed points among
which we can always find one witly,,>x,, and G(y,)
>G(Xy). There, the maximunH(x,,,y,) is positive, and
7(N) diverges exponentially a increases. We would like
to point out that the situation is different from that of
7 (N/2)+1)]. In fact, it corresponds to the case with,
being fixed to zero.

Finally, let us consider the behavior @fN) on the line
separating two regions | and IV. As we approach this line
from region 1V, the nonzero fixed points merge to disappear
at e=€,>0. That is, we can find a positive; such that
F(e1)=F'(e1)=0. On this line, the maximum point is
given by X,,=y,= €1, S0 that the maximun(X,,,yy) IS
zero. Expandindd (x,y) around this point, we get

e el (y— e — (x— €)Y+ - -
H(x,Y)= = £ G" (en)(y— €)= (x—€)*]+ - .
(30

[Here we do not write dowis" () explicitly since it is not

important as far as it is positiveNote that the leading order

is the third instead of the fourth, as in the case of the critical

¢= /4 yields a logarithmic divergence. Figure 3 shows ajina The reason is thaG(e) is not symmetric abouk

typical behavior of the characteristic timéN) as a function
of N for several values ofA with T;=0.2. The first two
uppermost lines stand far(N) in region Il, and the others
represent that in region I. We conclude that in region(N)
diverges logarithmically aBl increases.

As we see in Eq(27), the leading term vanishes on the

critical line. On this line, we need to expand more. So

= ¢4, While it is symmetric abou¢=0. Consequentlyr(N)
on this line diverges algebraically &&'/°.

VI. CONCLUSIONS

We analytically investigate the urn model introduced by
Lipowski and DroZ 3]. We exactly solve the master equation
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of the model in the thermOdynamiC limit and find how the cal line, a_ndp(x),ve_x6 on the tricritical point, where is

probability distribution evolves. In the long time limit, the the rescaled order parameter proportional to the particle ex-
probability distribution becomesé peaks only at the stable cesse. As we showedG(e)~H(0,¢€), and its behavior on
fixed points. In fact, the ergodicity of the dynamics is bro-the critical line (including the tricritical poink is given by
ken; so that the dynamical phase space is decomposed inksl- (26). Therefore the critical probability distribution has
disconnected sectors separated by the unstable fixed point§€ form p(e)~ gxr{—%(l—_%A_)g“] on the critical line, and
The strength of a peak is equal to the sum of initial prob- P(€) ~€XH —15e”] on the tricritical point. Our analytic result

abilities in the disconnected sector it belongs to. supports their numerical result. .
We also solve exactly the stationary probability distribu- The first-passage problem is analytically solved. Interest-

. ) . ingly, both the shortest characteristic time and the stationary
tion where we take the long time limit before we take ther'probability distribution are governed by the saiinee en-
modynamic limit. Regardless of the initial probability distri- gy Therefore, the behavior of the shortest characteristic
bution, it shows double peaks or a single central peakime and the properties of the stationary probability distribu-
depending on the parameters of the system. The final formulgon are closely related. The analytic results on the behavior
of the stationary probability distribution resembles that of thepf the characteristic times support the numerical results of
equilibrium systems, where the transition from the doubleg jpowski and Droz3].
peaks to the single peak is determined by the condition that ' Finally, it would be very interesting to understand why
free energief two phases become equal. both the stationary probability distribution and the shortest
Recently, Lipowski and Dro5] numerically calculated  characteristic time are governed by the sdmee energy It
Binder cumulants of the urn model to find that the critical would also be of interest to extend our ana|ytic Study to
probability distribution has the forrp(x)~e*"4 on the criti-  many-urn models and other types of urn models.
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